Bose-Einstein Statistics

Any number of particles can exist in one quantum state.
Distribution function can be given by
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where a may be a function of temperature, T.
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Bose-Einstein Condensation

If the temperature of any gas is reduced, the wave packets grow
larger as the atoms lose momentum according to uncertainty
principle.

When the gas becomes very cold, the dimensions of the wave
packets exceeds the average atomic spacing resulting into
overlapping of the wave packets. If the atoms are bosons,
eventually, all the atoms fall into the lowest possible energy
state resulting into a single wave packet. This is called Bose-
Einstein condensation.

The atoms in such a Bose-Einstein condensate are barely
moving, are indistinguishable, and form one entity — a
superatom.



Fermi-Dirac Statistics

Obey Pauli’'s exclusion Principle
Distribution function can be given by

1

Jrp (&) =—F———
r0.(€) e’ +1

f (e) can never exceed 1, whatever be the value of a, e and T. So
only one particle can exist in one quantum state.

a is given by €
F

kT

where € is the Fermi Energy
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Thus at T = 0, For € < e, all energy states frome =0 to e,

are occupied as fF.D.(g) s

Thus at T =0, all energy states for which € > e. are vacant.
fF,D_ (€)=0
Case I
T>0

Some of the filled states just below €. becomes vacant while
some just above €. become occupied.
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Probability of finding a fermion (i.e. electron in metal) having
energy equal to fermi energy (e;) is 2 at any temperature.
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Black Body Radiation

All objects radiate electromagnetic energy continuously
regardless of their temperatures.

Though which frequencies predominate depends on the
temperature.
At room temperature most of the radiation is in infrared part
of the spectrum and hence is invisible.
The ability of a body to radiate is closely related to its ability
to absorb radiation.

A body at a constant temperature is in thermal equilibrium
with its surroundings and must absorb energy from them at
the same rate as it emits energy.



A perfectly black body is the one which absorbs completely
all the radiation, of whatever wavelength, incident on it.

Since it neither transmits any radiation, it appears black
whatever the color of the incident radiation may be.

There is no surface available in practice which will absorb all
the radiation falling on it.

The cavity walls are constantly emitting and absorbing
radiation, and this radiation is known as black body
radiation.

Characteristics of Black Body Radiation

(i) The total energy emitted per second
per unit area (radiancy E or area under
curve) increases rapidly with increasing
temperature.

(i) At a particular temperature, the
spectral radiancy is maximum at a
particular frequency.

(iif) The frequency (or wavelength, A)

for maximum  spectral radiancy
decreases in direct proportion to the
increase in temperature. This is called
“Wien’s displacement law”

A,,XT = constant (2.898 x 10~ m.K)




Planck’s Radiation Law

Planck assumed that the atoms of the walls of cavity radiator
behave as oscillators with energy
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The average energy of an oscillator is
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This is Planck’s Radiation formula in terms of frequency.

In terms of wavelength
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This is Planck’s Radiation formula in terms of wavelength.



Case | : (Rayleigh-Jeans Law)
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Case Il : (Wein’s Law)
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Here A and B are constants.



Stefan’s Law

Planck’s Radiation formula in terms of frequency is
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The spectral radiancy E, is related to the energy density u, by
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Wein’s Displacement Law

Planck’s Radiation formula in terms of frequency is
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A, XT = constant (2.898 x 10 m.K)

Peaks in Black Body radiation shifts to shorter wavelength
with increase in temperature.



Specific Heat of Solids

Atoms in solid behave as oscillators.

In case of solids total average energy per atom per degree
of freedom is kT (0.5kT from K.E. and 0.5kT from P.E.).

Each atom in the solid should have total energy = 3kT (3
degrees of freedom).

For one mole of solid, total energy, E = 3N_KT (classically)
Here N, is the Avogadro number.
E =3RT

Specific heat at constant volume is
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This is Dulong & Petit's Law.

This means that atomic specific heat (at constant volume)
for all solids is approx 6 kcal/kmol.K and is independent of

T.
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Dulong and Petit’'s Law fails for light elements such as B, Be
and C.
Also it is not applicable at low temperatures for all solids.



Einstein’s theory of Specific Heat of Solids

According to it the motion of the atoms in a solid is oscillatory.
The average energy per oscillator atom) is
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The total energy for one mole of solid in three degrees of
freedom.
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This is Einstein’s specific heat formula.
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Case I:
At high T, KT >> hv then



C =3R (. kT >> hv)

This is in agreement with Dulong & Petit's Law at high T.
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i.e. is in agreement with experimental results at low T.



Free electrons in a metal
Typically, one metal atom gives one electron.
One mole atoms gives one mole of free electrons, (N,)

If each free electron can behave like molecules of an ideal gas.
Then
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Then total specific heat in metals at high T should be
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But experimentallyathigh T C =3R

= Free electrons don’t contribute in specific heat,
Why?

Electrons are fermions and have upper limit on the occupancy
of the quantum state.

By definition highest state of energy to be filled by a free
electron at T = 0 is obtained at € = e,

The no. of electrons having energy € is
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Here V is the volume of the metal
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where N/V is the density of free electrons.
Electron energy distribution

No. of electrons in the electron gas having energy between €
and e +deis
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This is electron energy distribution formula, according to
which distribution of electrons can be found at different
temperatures.



When a metal is heated :
then only those electrons m‘:("
which are near the top of 1200 K-
the fermi level (KT of the
Fermi energy) are -~
excited to higher vacant
energy states.

KT =0.0025 eV at 300K
kT = 0.043 eV at 500K ¢ %

The electrons in lower energy states cannot absorb more
energy because the states above them are already filled.

This is why the free electrons contribution in specific heat is
negligible even at high T.

Average electron energy at 0K

Total energy at OK is e
E,= [en(e)de
0

Since at OK all electrons have energy less than or equal to e
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